Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 580
Filtrar
1.
PLoS One ; 19(4): e0300615, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38568985

RESUMO

The majority of Iranian fig production is exported, making it one of the world's most well-known healthy crops. Therefore, the main objective of the current experiment was to investigate the effects of various types of organic fertilizers, such as animal manure (cow and sheep), bird manure (partridge, turkey, quail, and chicken), and vermicompost, on the nutritional status of trees, vegetative and reproductive tree characteristics, fruit yield, and fruit quality traits in dried fig cultivar ("Sabz"). According to the findings, applying organic fertilizers, particularly turkey and quail, significantly improves vegetative and reproductive characteristics. However, other manures such as sheep, chicken, and vermicompost had a similar effect on the growth parameters of fig trees. Additionally, the findings indicated that except for potassium, use of all organic fertilizers had an impact on macro and microelements such as phosphorus, nitrogen, and sodium amount in fig tree leaves. Also, based on fruit color analysis in dried figs, the use of all organic fertilizers improved fruit color. Moreover, the analyses fruit biochemical showed that the use of some organic fertilizers improved that TSS and polyphenol compounds such as coumarin, vanillin, hesperidin gallic acid and trans frolic acid. In general, the results indicated that the addition of organic fertilizers, especially turkey manure, led to increased vegetative productivity and improvement in the fruit quality of the rain-fed fig orchard.


Assuntos
Ficus , Frutas , Ovinos , Animais , Solo/química , Ficus/química , Irã (Geográfico) , Fertilizantes/análise , Esterco/análise , Estado Nutricional , Nitrogênio/análise
2.
J Nat Prod ; 87(4): 675-691, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38442031

RESUMO

Schwarzinicines A-D, a series of alkaloids recently discovered from Ficus schwarzii, exhibit pronounced vasorelaxant activity in rat isolated aorta. Building on this finding, a concise synthesis of schwarzinicines A and B has been reported, allowing further investigations into their biological properties. Herein, a preliminary exploration of the chemical space surrounding the structure of schwarzinicine A (1) was carried out aiming to identify structural features that are essential for vasorelaxant activity. A total of 57 analogs were synthesized and tested for vasorelaxant activity in rat isolated aorta. Both efficacy (Emax) and potency (EC50) of these analogs were compared. In addition to identifying structural features that are required for activity or associated with potency enhancement effect, four analogs showed significant potency improvements of up to 40.2-fold when compared to 1. Molecular dynamics simulation of a tetrameric 44-bound transient receptor potential canonical-6 (TRPC6) protein indicated that 44 could potentially form important interactions with the residues Glu509, Asp530, Lys748, Arg758, and Tyr521. These results may serve as a foundation for guiding further structural optimization of the schwarzinicine A scaffold, aiming to discover even more potent analogs.


Assuntos
Vasodilatadores , Vasodilatadores/farmacologia , Vasodilatadores/química , Vasodilatadores/síntese química , Animais , Relação Estrutura-Atividade , Ratos , Estrutura Molecular , Ficus/química , Aorta/efeitos dos fármacos , Alcaloides/farmacologia , Alcaloides/química , Masculino , Simulação de Dinâmica Molecular
3.
Bioorg Chem ; 144: 107116, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237391

RESUMO

Four undescribed coumarin derivatives, ficusalt A (1) and ficusalt B (2), a pair of racemic coumarins, (±) ficudimer A (3a/3b), along with ten known amides, were isolated from the roots of Ficus hirta. Their structures were elucidated by several spectroscopic data analyses, including HRESIMS, NMR, and X-ray single-crystal diffraction. The cytotoxic activities of all compounds against HeLa, HepG2, MCF-7, and H460 cell lines were detected using the MTT assay. Among these, 5 showed the highest activity against HeLa cells. Subsequently, the apoptotic, anti-invasive, and anti-migration effects of 5 on HeLa cells were determined by flow cytometer, transwell invasion assay, and wound-healing assay, respectively. The result suggested that 5 distinctly induced the apoptosis in HeLa cells and inhibited their invasion and migration. Further studies on anticancer mechanisms were conducted using Western blotting. As a result, 5 increased the cleavage of PARP and the expression of pro-apoptotic protein Bax. Moreover, 5 notably upregulated the phosphorylation of p38 and JNK, whereas inhibited the expression of p-ERK and p-AKT. Our results demonstrated that 5 could be a potential leading compound for further application in the treatment of cervical cancer.


Assuntos
Antineoplásicos , Ficus , Feminino , Humanos , Células HeLa , Ficus/química , Amidas/farmacologia , Cumarínicos/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Apoptose
4.
Eur J Neurosci ; 59(7): 1833-1847, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38217338

RESUMO

Neurodegenerative diseases (NDs) are a significant global health concern, primarily affecting middle and older populations. Recently, there has been growing interest in herbal therapeutics as a potential approach to address diverse neuropathological conditions. Despite the widespread prevalence of NDs, limited phytochemical has been reported for their promising therapeutic potential with distinct underlying mechanisms. Additionally, the intricate molecular pathways influenced by herbal phytoconstituents, particularly in neurodegenerative disorders, are also not well documented. This report explores the phytoconstituents of Ficus racemosa (F. racemosa), an unfamiliar plant of the Moraceae family, for their potential interactions with pathological pathways of NDs. The influential phytoconstituents of F. racemosa, including polyphenols, glycosides, terpenoids, and furocoumarin, have been reported for targeting diverse pathological states. We proposed the most convincing molecular interplay between leading phytoconstituents and detrimental signalling cascades. However, extensive research is required to thoroughly understand the phytochemical persuaded intricate molecular pathway. The comprehensive evidence strongly suggests that F. racemosa and its natural compounds could be valuable in treating NDs. This points towards an exciting path for future research and the development of potential treatments based on a molecular level.


Assuntos
Ficus , Doenças Neurodegenerativas , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Ficus/química , Doenças Neurodegenerativas/tratamento farmacológico , Compostos Fitoquímicos
5.
Fitoterapia ; 172: 105755, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000761

RESUMO

Ficus deltoidea was known for its potent antioxidant, anti-melanogenic and photoprotective skin barrier activities. These properties are contributed by its biomarkers which are vitexin and isovitexin. This study aims to optimize the yield of methanolic extraction of Ficus deltoidea leaves (EFD) and evaluate their effects on skin barrier function and hydration. For optimization, Box-Behnken design was utilized to investigate the effects of methanol concentration, sonication time, and solvent-to-sample ratio on the yields of vitexin and isovitexin in EFD. The optimal yields obtained were 32.29 mg/g for vitexin and 35.87 mg/g for isovitexin. The optimum extraction conditions were 77.66% methanol concentration, 20.03 min sonication time, and 19.88 mL/g solvent-to-sample ratio. The quantitative real-time polymerase chain reaction was utilized to measure variant marker genes of transglutaminase-1, caspase 14, ceramide synthase 3, involucrin, and filaggrin of EFD-induced keratinocyte differentiation by in vitro study. Exposure to EFD has elevated the mRNA levels of all tested marker genes by 0.7-9.2 folds. Then, in vivo efficacy study was conducted on 20 female subjects for 14 days to evaluate skin biophysical assessment of hydration. EFD topical formulation treatment successfully increased skin hydration on day 7 (43.74%) and day 14 (47.23%). In silico study by molecular docking was performed to identify intermolecular binding interactions of vitexin and isovitexin with the interested proteins of tested marker genes. The result of molecular docking to the interested proteins revealed a similar trend with real-time PCR data. In conclusion, EFD potentially enhanced the skin barrier function and hydration of human skin cells.


Assuntos
Ficus , Extratos Vegetais , Humanos , Feminino , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Ficus/química , Metanol , Simulação de Acoplamento Molecular , Estrutura Molecular , Solventes
6.
J Sci Food Agric ; 104(6): 3275-3293, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38115189

RESUMO

BACKGROUND: Fig (Ficus carica L.) fruit is consumed worldwide as a functional food. It contains phytochemicals that have been related to health benefits. However, the characteristic chemicals remain unclear. In this work, phytochemicals were prepared from figus by ultrasound-assisted extraction under optimized conditions. The chemical composition of fig fruit and leaves was characterized by ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). RESULTS: One hundred and fifty-seven compounds were identified, including 58 flavonoids, 29 coumarins, 19 acids, 15 terpenoids, 11 alkaloids, and 25 other compounds. The mass spectrum (MS) fragmentation pathways of representative chemicals were elucidated. Flavonoid glycosides and prenylated flavonoids were mainly present in fig fruit, whereas coumarins were abundant in leaves. Both fig fruit and leaf extracts showed good cellular antioxidant activity. CONCLUSION: The full phytochemical profile of fig was revealed by UPLC-MS/MS. Prenylated flavonoids and prenylated coumarins were the characteristic phytochemicals. These data provided useful information for the extensive utilization of fig fruit in functional food. © 2023 Society of Chemical Industry.


Assuntos
Antioxidantes , Ficus , Antioxidantes/análise , Ficus/química , Cromatografia Líquida , Espectrometria de Massas em Tandem , Flavonoides/análise , Cumarínicos , Extratos Vegetais/química , Compostos Fitoquímicos/análise
7.
Molecules ; 28(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38067448

RESUMO

Diabetes contributes to the rising global death rate. Despite scientific advancements in understanding and managing diabetes, no single therapeutic agent has been identified to effectively treat and prevent its progression. Consequently, the exploration for new antidiabetic therapeutics continues. This study aimed to investigate the antidiabetic bioactive ethyl acetate fraction of F. lutea at the molecular level to understand the molecular interactions and ligand-protein binding. To do this, the fraction underwent column chromatography fractionation to yield five compounds: lupeol, stigmasterol, α-amyrin acetate, epicatechin, and epiafzelechin. These compounds were evaluated in vitro through α-glucosidase inhibition and glucose utilization assays in C2C12 muscle and H-4-11-E liver cells using standard methods. In silico analysis was conducted using molecular docking and ADMET studies. Epicatechin exhibited the most potent α-glucosidase inhibition (IC50 = 5.72 ± 2.7 µg/mL), while epiafzelechin stimulated superior glucose utilization in C2C12 muscle cells (33.35 ± 1.8%) and H-4-11-E liver cells (46.7 ± 1.2%) at a concentration of 250 µg/mL. The binding energies of the isolated compounds for glycogen phosphorylase (1NOI) and α-amylase (1OSE) were stronger (<-8.1) than those of the positive controls. Overall, all tested compounds exhibited characteristics indicative of their potential as antidiabetic agents; however, toxicity profiling predicted epiafzelechin and epicatechin as better alternatives. The ethyl acetate fraction and its compounds, particularly epiafzelechin, showed promise as antidiabetic agents. However, further comprehensive studies are necessary to validate these findings.


Assuntos
Catequina , Diabetes Mellitus , Ficus , Hipoglicemiantes/química , Simulação de Acoplamento Molecular , Catequina/farmacologia , Ficus/química , alfa-Glucosidases , Extratos Vegetais/química , Diabetes Mellitus/tratamento farmacológico , Glucose , alfa-Amilases
8.
Ultrason Sonochem ; 101: 106680, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37956509

RESUMO

In this research, the ultrasound-assisted extraction (UAE) conditions of the water-soluble polysaccharide (FCPS) from Ficus carica fruits were optimized using the response surface methodology. The optimal FCPS yield was 7.97 % achieved by conducting ultrasound-assisted extraction four times at a solid-liquid ratio of 1:20 (g/mL) and an ultrasound temperature of 70 °C. Then, the structure, antioxidant properties, hypoglycemic effects, and immunomodulatory activities of FCPS were evaluated. FCPS was characterized as irregular, rough-surfaced, flaky materials consisting of pyran-type polysaccharides with α- and ß-glycosidic linkages, and composed of multiple monosaccharides and only one homogeneous concentrated polysaccharide component (FCPS1) with a molecular weight of 4.224 × 104 Da. The results suggested FCPS exhibited remarkable antioxidant activity in vitro, as evidenced by improved cell viability and reduced the reactive oxygen species (ROS) levels. Meanwhile, FCPS effectively improved liver-related insulin resistance by promoting glucose consumption in hepatocytes and activated the immune response through activation of murine bone marrow-derived dendritic cells (DCs) and upregulation of interleukin 6 (IL6) and interleukin 12 (IL-12) expression. The findings demonstrate the efficacy of the UAE technique in isolating FCPS with biological functionality and FCPS could potentially serve as a beneficial organic antioxidant source and functional food, carrying important implications for future studies.


Assuntos
Antioxidantes , Ficus , Animais , Camundongos , Antioxidantes/química , Ficus/química , Hipoglicemiantes/farmacologia , Polissacarídeos/química , Imunidade
9.
Chem Biodivers ; 20(12): e202301326, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37846813

RESUMO

One new mesomer, ficusnaph A (1), two new phenolic acid derivatives, ficusnaphs B and C (2 and 3) together with three known biogenetically related polysubstituted naphthalene derivatives (4-6) were isolated from the stems of Ficus esquiroliana Levl. The structures of these compounds were elucidated using comprehensive spectroscopic methods. Compounds 1-6 were evaluated the inhibitory activities against the nitric oxide (NO) production induced by lipopolysaccharide (LPS) in mouse macrophage RAW264.7 cells in vitro. Compounds 1 and 2 showed significant inhibitory activity with the IC50 value of 3.12±0.14 and 7.66±0.18 µM, respectively.


Assuntos
Anti-Inflamatórios , Ficus , Animais , Camundongos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Ficus/química , Células RAW 264.7 , Hidroxibenzoatos/farmacologia , Óxido Nítrico , Lipopolissacarídeos/farmacologia , Estrutura Molecular
10.
J Chromatogr A ; 1706: 464241, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37541060

RESUMO

This study compares different solvent systems with the use of spontaneous fermentation on the phytochemical composition of leaf extracts from a locally grown white variety of common fig (Ficus carica Linn.). The aim was to detect and identify bioactive compounds that are responsible for acetylcholinesterase (AChE), α-amylase and cyclooxygenase-1 (COX-1) enzyme inhibition, and compounds that exhibit antimicrobial activity. Bioactive zones in chromatograms were detected by combining High-performance thin-layer chromatography (HPTLC) with enzymatic and biological assays. A new experimental protocol for measuring the relative half-maximum inhibitory concentration (IC50) was designed to evaluate the potency of the extracts compared to the potency of known inhibitors. Although the IC50 of the fig leaf extract for α-amylase and AChE inhibition were significantly higher when compared to IC50 for acarbose and donepezil, the COX-1 inhibition by the extract (IC50 = 627 µg) was comparable to that of salicylic acid (IC50 = 557 µg), and antimicrobial activity of the extract (IC50 = 375-511 µg) was similar to ampicillin (IC50 = 495 µg). Four chromatographic zones exhibited bioactivity. Compounds from detected bioactive bands were provisionally identified by comparing the band positions to coeluted standards, and by Fourier transform infrared (FTIR) spectra from eluted zones. Flash chromatography was used to separate selected extract into fractions and isolate fractions that are rich in bioactive compounds for further characterisation with nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography-mass spectrometry (LC-MS) analysis. The main constituents identified were umbelliferon (zone 1), furocoumarins psoralen and bergapten (zone 2), different fatty acids (zone 3 and 4), and pentacyclic triterpenoids (calotropenyl acetate or lupeol) and stigmasterol (zone 4).


Assuntos
Anti-Infecciosos , Ficus , Cromatografia em Camada Delgada , Ficus/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Acetilcolinesterase , alfa-Amilases , Triterpenos Pentacíclicos , Anti-Infecciosos/farmacologia
11.
J Pharm Biomed Anal ; 235: 115620, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37557066

RESUMO

Ficus species (Moraceae) have been used for nutrition and traditional medicine, and plants from this family are phytochemically abundant and serve as a potential source of natural products. As a result of the inherent complexity of the plant metabolomes and the fact that these Ficus species chemical space has not yet been fully decoded, it is still difficult to characterize their phytochemistry. Therefore, this study, we suggest the use of the molecular networking to elucidate the chemical classes existing in leaves of three Ficus species (F. deltoidei Jack, F. drupacea Thunb and F. sycomorus L.) and highlight the importance of molecular networking in examining their chemotaxonomy . By using computational tools, 90 metabolites were annotated , including phenolic acids, flavonoids, furanocoumarins, fatty acids and terpenoids. Phenolic acids were detected as the main class present in the three studied species. Flavonoids-C-glycosides, flavonoids-O-glycosides and isoflavonoids were mainly present in F. drupacea and F. sycomorus, while furanocoumarins were proposed in F. sycomorus. Vomifoliol-based sesquiterpenes were proposed in F. deltoidei. The chemotaxonomic differentiation agreed with the DNA fingerprinting using SCOT and ISSR markers. F. deltoidei, in particular, had a divergent chemical fingerprint as well as a different genotype. Chemotype differentiation using chemical fingerprints, in conjunction with the proposed genetic markers, creates an effective identification tool for the quality control of the raw materials and products derived from those three Ficus species. As well, F. drupacea exploited the most potent inhibition of H. pylori with MIC of 7.81 µg/ mL compared with clarithromycin. Overall, molecular networking provides a promising approach for the exploration of the chemical space of plant metabolomes and the elucidation of chemotaxonomy.


Assuntos
Ficus , Furocumarinas , Helicobacter pylori , Cromatografia Líquida , Ficus/química , Helicobacter pylori/genética , Egito , Impressões Digitais de DNA , Espectrometria de Massas em Tandem , Flavonoides/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Glicosídeos
12.
Int J Biol Macromol ; 247: 125712, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37422243

RESUMO

Ficus awkeotsang Makino (jelly fig) can produce edible gels by rubbing its seeds in water at room temperature in which pectin is considered as the main gelling component. However, the spontaneous gelation mechanism of Ficus awkeotsang Makino (jelly fig) pectin (JFSP) is still unclear. This study aimed to reveal the structure, physicochemical properties, and spontaneous gelation behaviors and mechanism of JFSP. JFSP was first obtained by water extraction and alcohol precipitation method, with a pectin yield of 13.25 ± 0.42 % (w/w), weight-average molar mass (Mw) of 111.26 kDa, and methoxylation degree (DM) of 26.8 %. Analysis of monosaccharide compositions showed that JFSP was composed of 87.8 % galactose acid, indicating a high percentage of galacturonic acid blocks. Measurement on the gelling capacity suggested that JFSP gels can be easily formed by simply dispersing the pectin in water at room temperature without adding any co-solutes or metal ions. Gelation force analysis indicated that hydrogen bonding, hydrophobic interactions, and electrostatic interactions were the main factors contributing to gel formation. At 1.0 % (w/v) of pectin concentration, JFSP gels exhibited relatively high gel hardness (72.75 ± 1.15 g) and good thermal and freeze-thawing stability. Overall, these findings highlight the potential application of JFSP as a promising commercial pectin resource.


Assuntos
Ficus , Pectinas , Pectinas/química , Ficus/química , Sementes , Água , Géis
13.
Nutrients ; 15(11)2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37299587

RESUMO

With their rich history dating back 6000 years, figs are one of the oldest known plants to mankind and are a classical fruit in the Mediterranean diet. They possess a diverse array of bioactive components, including flavonoids, phenolic acids, carotenoids, and tocopherols, which have been used for centuries in traditional medicine for their health-promoting effects addressing gastrointestinal, respiratory, inflammatory, metabolic, and cardiovascular issues. This review summarizes the updated information on the phenolic composition, antioxidant capacity and other functional properties of fresh and dried figs cultivated in various parts of the world, highlighting variation in phenolic composition based on cultivar, harvesting time, maturity stage, processing, and fig parts. Additionally, the review delves into the bio-accessibility and bio-availability of bioactive components from figs and their potential influence on cardiovascular health, diabetes, obesity, and gut/digestive health. Data suggest that the intake of figs regularly in the diet, alone or with other dried fruits, increases select micronutrient intake and is associated with higher diet quality, respectively. Research in animal and human models of health and disease risk provide preliminary health benefits data on figs and their extracts from fig parts; however, additional well-controlled human studies, particularly using fig fruit, will be required to uncover and verify the potential impact of dietary intake of figs on modern day health issues.


Assuntos
Ficus , Animais , Humanos , Ficus/química , Frutas/química , Dieta , Antioxidantes/análise , Compostos Fitoquímicos/química
14.
J Nat Prod ; 86(6): 1520-1528, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37253120

RESUMO

Ficucaricone D (1) and its 4'-demethyl congener 2 are isoflavones isolated from fruits of Ficus carica that share a 5,7-dimethoxy-6-prenyl-substituted A-ring. Both natural products were, for the first time, obtained by chemical synthesis in six steps, starting from 2,4,6-trihydroxyacetophenone. Key steps are a microwave-promoted tandem sequence of Claisen- and Cope-rearrangements to install the 6-prenyl substituent and a Suzuki-Miyaura cross coupling for installing the B-ring. By using various boronic acids, non-natural analogues become conveniently available. All compounds were tested for cytotoxicity against drug-sensitive and drug-resistant human leukemia cell lines, but were found to be inactive. The compounds were also tested for antimicrobial activities against a panel of eight Gram-negative and two Gram-positive bacterial strains. Addition of the efflux pump inhibitor phenylalanine-arginine-ß-naphthylamide (PAßN) significantly improved the antibiotic activity in most cases, with MIC values as low as 2.5 µM and activity improvement factors as high as 128-fold.


Assuntos
Ficus , Isoflavonas , Humanos , Ficus/química , Isoflavonas/farmacologia , Isoflavonas/química , Antibacterianos/farmacologia , Linhagem Celular
15.
Cell Biochem Funct ; 41(5): 573-589, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37222443

RESUMO

Inflammation is an innate reaction of the body of an individual when subjected to the noxious factors repeatedly. Pharmacological approaches focused at disrupting cytokine signaling networks have become significant therapeutic alternatives for the treatment of inflammatory illnesses, cancer and autoimmune disorders. High levels of inflammatory mediators, particularly interleukin IL-1, IL-6, IL-18, IL-12, and tumor necrosis factor alpha leads to a cytokine storm in the body. Among all the released cytokines in a patient suffering from inflammatory disorder, IL-6 mediator has a pivotal role in this inflammatory cascade which progresses to a cytokine storm. Therefore, the blockage of the IL-6 inflammatory mediator could be a promising treatment option for the patients with hyper inflammatory conditions. The phytochemicals could provide the new lead compounds against the IL-6 mediator. Ficus carica has been the ideal plant of research and investigation due to its commercial, economic and medical importance. The anti-inflammatory properties of F. carica were further investigated by in silico and in vivo approaches. The docking scores of Cyanidin-3,5-diglucoside, Kaempferol-7-O-rutinoside, Cyanidin-3-rhamnoglucoside, and Rutin are -9.231, -8.921, -8.840, and -8.335 Kcal/mole respectively. The free energy of binding and stability of the docked complexes of these top four phytochemicals with the IL-6 were further analyzed by Molecular Mechanics-Generalized Born Surface Area and Molecular Dynamic simulations, respectively. The in vivo anti-inflammatory carrageenan-induced rat paw edema model was used for the validation of in silico results. The maximum percentage paw edema inhibition with petroleum ether and ethyl acetate was 70.32% and 45.05%, respectively. The in vivo anti-inflammatory activity confirms the anti-inflammatory potential of F. carica. Therefore, it is predicted that Cyanidin-3,5-diglucoside, Kaempferol-7-O-rutinoside, Cyanidin-3-rhamnoglucoside, and Rutin have the potential to inhibit the IL-6 mediator which will aid in mitigating the cytokine storm in patients with acute inflammations.


Assuntos
Ficus , Interleucina-6 , Ratos , Animais , Interleucina-6/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Ficus/química , Ficus/metabolismo , Quempferóis , Síndrome da Liberação de Citocina , Carragenina/efeitos adversos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/química , Citocinas/metabolismo , Compostos Fitoquímicos/efeitos adversos , Edema/induzido quimicamente
16.
Biosci Biotechnol Biochem ; 87(5): 532-540, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37037773

RESUMO

Ficus carica produces, in addition to the cysteine protease ficin, a serine protease (FSP). Here, we purified FSP to homogeneity from the fruit of F. carica cultivar Masui Dauphine. An 81-fold enrichment in specific activity of FSP with 2.1% recovery was attained. Three protein bands (70, 62, and 60 kDa) were identified on SDS-PAGE. Each band was identified as a subtilisin-like protease (661 amino acids) by trypsin digestion, LC-MS/MS analysis, and the partial N-terminal amino acid sequence analysis. Gelatin zymography revealed that the active FSP exists as a dimer. The optimum hydrolysis pH of FSP was 7.5, and the pHs at which the enzyme retained its initial activity by 70% in 24 h were 8.0-11.0. The optimum hydrolysis temperature of FSP was 50-60 °C, and the temperature required to reduce the initial activity by 50% in 15 min was 70 °C. These results will inform the industrial use of FSP.


Assuntos
Ficus , Serina Proteases , Frutas , Ficus/química , Cromatografia Líquida , Espectrometria de Massas em Tandem , Serina Endopeptidases , Concentração de Íons de Hidrogênio , Estabilidade Enzimática
17.
Int J Biol Macromol ; 235: 123880, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-36870647

RESUMO

In this study, lignin was synthesized from the waste leaves of Ficus auriculata obtained after the extraction of gallic acid. The synthesized lignin was incorporated into PVA films, and the neat and blended films were characterized using different techniques. Lignin addition improved the UV-shielding, thermal, antioxidant, and mechanical properties of PVA films. The water solubility decreased from 31.86 % to 7.14 ± 1.94 %, while the water vapor permeability increased from 3.85 ± 0.21 × 10-7 g.m.h-1 Pa-1 to 7.84 ± 0.64 × 10-7 g.m.h-1 Pa-1 for pure PVA film and the film containing 5 % lignin, respectively. The prepared films showed a much better performance than commercial packaging films in inhibiting mold growth during the storage of preservative-free bread. The bread samples packed with commercial packaging showed signs of mold growth on the 3rd day, while the growth was inhibited entirely till the 15th day for PVA film containing 1 % lignin. The pure PVA film and the ones containing 3 % and 5 % of lignin inhibited growth till the 12th and 9th day, respectively. Findings from the current study show that safe, cheap, and eco-friendly biomaterials can hinder the growth of spoilage microorganisms and potentially be used in food packaging.


Assuntos
Ficus , Embalagem de Alimentos , Química Verde , Lignina , Folhas de Planta , Lignina/química , Lignina/metabolismo , Ficus/química , Folhas de Planta/química , Embalagem de Alimentos/economia , Embalagem de Alimentos/métodos
18.
Environ Sci Pollut Res Int ; 30(17): 49108-49124, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36773254

RESUMO

The leaves of Ficus johannis Boiss (F. johannis), commonly known as Fig tree, Anjir, and Teen, are used by the folk medicinal practitioners in Iran for controlling hyperglycemia in diabetic patients. This study investigated the pharmacological basis for antidiabetic effect of the ethanolic extract of F. johannis leaves using in vitro and in vivo experimental models. Qualitative screening of phytochemicals, estimation of total phenolic and flavonoid contents, and in vitro antioxidant and α-amylase inhibition assays were performed. Moreover, the High-performance liquid chromatography (HPLC) quantification, acute toxicity, glucose tolerance, and in vivo antidiabetic effect along with the evaluation of gene expressions involved in diabetes mellitus were carried out. Significant quantities of phenolic (71.208 ± 2.89 mgg-1 GAE) and flavonoid (26.38 ± 3.53 mgg-1 QE) were present. Inhibitory concentration (IC50) of the plant extract exhibited an excellent in vitro antioxidant (IC50 = 33.81 µg/mL) and α-amylase (IC50 = 12.18 µg/mL) inhibitory potential. The HPLC analysis confirmed the gallic acid (257.79 mgg-1) as main constituent of the extract followed by kaempferol (22.86 mgg-1), myricetin (0.16 mgg-1), and quercetin (3.22 mgg-1). Ethanolic extract displayed glucose tolerance in normo-glycemic rats. Streptozotocin-induced hyperglycemia declined dose dependently in the extract treated rats with improvement in lipid profile and liver and renal function biomarkers. The F. johannis-treated groups showed an increase in mRNA expressions of glucose transporter 4 (GLUT-4), glucokinase, insulin growth like factor 1 and peroxisomal proliferator activating receptor gamma in pancreas. However, the Glucose-6-phosphatase was downregulated. Present study suggests that the ethanolic extract of F. johannis leaves demonstrates a good anti-diabetic profile by improving insulin sensitivity, GLUT-4 translocation, and carbohydrate metabolism while inhibiting lipogenesis.


Assuntos
Diabetes Mellitus Experimental , Ficus , Hiperglicemia , Extratos Vegetais , Animais , Ratos , alfa-Amilases , Antioxidantes/farmacologia , Glicemia/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , Etanol , Ficus/química , Ficus/metabolismo , Flavonoides/farmacologia , Glucose , Hiperglicemia/tratamento farmacológico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Fenóis , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Estreptozocina , Quinases do Centro Germinativo/efeitos dos fármacos , Transportador de Glucose Tipo 4/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/efeitos dos fármacos , Glucose-6-Fosfatase/efeitos dos fármacos
19.
Int J Mol Sci ; 24(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36768593

RESUMO

Natural product-based structural templates have immensely shaped small molecule drug discovery, and new biogenic natural products have randomly provided the leads and molecular targets in anti-analgesic activity spheres. Pain relief achieved through opiates and non-steroidal anti-inflammatory drugs (NSAIDs) has been under constant scrutiny owing to their tolerance, dependency, and other organs toxicities and tissue damage, including harm to the gastrointestinal tract (GIT) and renal tissues. A new, 3',4',6'-triacetylated-glucoside, 2-O-ß-D-(3',4',6'-tri-acetyl)-glucopyranosyl-3-methyl pentanoic acid was obtained from Ficus populifolia, and characterized through a detailed NMR spectroscopic analysis, i.e., 1H-NMR, 13C-DEPT-135, and the 2D nuclear magnetic resonance (NMR) correlations. The product was in silico investigated for its analgesic prowess, COX-2 binding feasibility and scores, drug likeliness, ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties, possible biosystem's toxicity using the Discovery Studio®, and other molecular studies computational software programs. The glycosidic product showed strong potential as an analgesic agent. However, an in vivo evaluation, though at strong levels of pain-relieving action, was estimated on the compound's extract owing to the quantity and yield issues of the glycosidic product. Nonetheless, the F. populifolia extract showed the analgesic potency in eight-week-old male mice on day seven of the administration of the extract's dose in acetic acid-induced writhing and hot-plate methods. Acetic acid-induced abdominal writhing for all the treated groups decreased significantly (p < 0.0001), as compared to the control group (n = 6) by 62.9%, 67.9%, and 70.9% of a dose of 100 mg/kg (n = 6), 200 mg/kg (n = 6), and 400 mg/kg (n = 6), respectively. Similarly, using the analgesia meter, the reaction time to pain sensation increased significantly (p < 0.0001), as compared to the control (n = 6). The findings indicated peripheral and central-nervous-system-mediated analgesic action of the product obtained from the corresponding extract.


Assuntos
Ficus , Animais , Masculino , Camundongos , Ácido Acético/uso terapêutico , Analgésicos/uso terapêutico , Ficus/química , Dor/tratamento farmacológico , Dor/induzido quimicamente , Extratos Vegetais/química , Ácidos Pentanoicos/química
20.
Molecules ; 28(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36770628

RESUMO

The current review was carried out on the industrial application of fig by-products and their role against chronic disorders. Fig is basically belonging to fruit and is botanically called Ficus carica. There are different parts of fig, including the leaves, fruits, seeds and latex. The fig parts are a rich source of bioactive compounds and phytochemicals including antioxidants, phenolic compounds, polyunsaturated fatty acids, phytosterols and vitamins. These different parts of fig are used in different food industries such as the bakery, dairy and beverage industries. Fig by-products are used in extract or powder form to value the addition of different food products for the purpose of improving the nutritional value and enhancing the stability. Fig by-products are additive-based products which contain high phytochemicals fatty acids, polyphenols and antioxidants. Due to the high bioactive compounds, these products performed a vital role against various diseases including cancer, diabetes, constipation, cardiovascular disease (CVD) and the gastrointestinal tract (GIT). Concussively, fig-based food products may be important for human beings and produce healthy food.


Assuntos
Antioxidantes , Ficus , Humanos , Antioxidantes/química , Ficus/química , Frutas/química , Extratos Vegetais/química , Compostos Fitoquímicos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...